Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?

Câu hỏi :

Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4}  - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?

A. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 0.

B. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 2. 

C. Giới hạn của \(f(x)\) khi \(x \to \infty \) là -2.

D. Không tồn tại giới hạn của \(f(x)\) khi \(x \to \infty \). 

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } (\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} )\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{{4x}}{{x\left( {\sqrt {1 + \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} } \right)}}\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{4}{{\left( {\sqrt {1 + \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} } \right)}} = 2\end{array}\)

Copyright © 2021 HOCTAP247