Cho hình chóp S.ABCD , với O là giao điểm của AC và BD. Mệnh đề nào sau đây đúng?

Câu hỏi :

Cho hình chóp S.ABCD , với O là giao  điểm của AC và BD. Mệnh đề nào sau đây đúng?

A. Nếu ABCD là hình bình hành thì \(\overrightarrow {SA}  + \overrightarrow {SB}  = \overrightarrow {SC}  + \overrightarrow {SD} \).

B. Nếu \(SA + SC = SB + SD\) thì ABCD là hình bình hành.

C. Nếu ABCD là hình bình hành thì \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = \overrightarrow 0 \).

D. Nếu \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \) thì ABCD là hình bình hành.

* Đáp án

D

* Hướng dẫn giải

Đáp án A, B, C sai do thiếu dữ kiện nên chưa thể xác định.

Đáp án D đúng do nếu \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \)   thì O là trung điểm chung của đoạn thẳng nối trung điểm AC và trung điểm BD mà O là giao hai đường chéo nên ABCD là hình bình hành.

Copyright © 2021 HOCTAP247