Cho \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L,\mathop {\lim }\limits_{x \to x{}_0} g(x) = M\). Chọn mệnh đề sai:

Câu hỏi :

Cho \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L,\mathop {\lim }\limits_{x \to x{}_0} g(x) = M\). Chọn mệnh đề sai:

A. \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f(x)}}{{g(x)}} = \dfrac{L}{M}\)

B. \(\mathop {\lim }\limits_{x \to {x_0}} {\rm{[}}f(x).g(x){\rm{]}} = L.M\)

C. \(\mathop {\lim }\limits_{x \to {x_0}} {\rm{[}}f(x) - g(x){\rm{]}} = L - M\)

D. \(\mathop {\lim }\limits_{x \to {x_0}} {\rm{[}}f(x) + g(x){\rm{]}} = L + M\)

* Đáp án

A

* Hướng dẫn giải

\(\mathop {\lim }\limits_{x \to {x_o}} f(x) = L,\mathop {\lim }\limits_{x \to {x_o}} g\left( x \right) = M\)

\( \Rightarrow \mathop {lim}\limits_{x \to {x_0}} {{f(x)} \over {g(x)}} = {L \over M}\) nếu \(M \ne 0\Rightarrow\) A sai

Copyright © 2021 HOCTAP247