Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1} - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liê...

Câu hỏi :

Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1}  - 2}}{{{x^2} - 1}},\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1

A. \(\dfrac{1}{2}\)

B. \(\dfrac{1}{4}\)

C. \(\dfrac{3}{4}\)

D. 1

* Đáp án

C

* Hướng dẫn giải

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} {{\sqrt {3x + 1} - 2} \over {{x^2} - 1}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {{3x + 1 - 4} \over {\left( {{x^2} - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {{3x - 3} \over {\left( {{x^2} - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {{3(x - 1)} \over {(x - 1)(x + 1)\left( {\sqrt {3x + 1} + 2} \right)}} \cr
& = \mathop {\lim }\limits_{x \to {1^ + }} {3 \over {\left( {x - 1} \right)\left( {\sqrt {3x + 1} + 2} \right)}} = {3 \over {2.4}} = {3 \over 8} \cr} \)

\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }}\dfrac {{a({x^2} - 2)} }{ {x - 3}} =\dfrac {a }{ 2}\)

Để f(x) liên tục tại x=1 thì \(\dfrac{a}{2} = \dfrac{3}{ 8} \Leftrightarrow a = \dfrac{3}{ 4}\)

Copyright © 2021 HOCTAP247