Hàm số \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

Câu hỏi :

Hàm số  \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

A. \(\left[ { - 1;1} \right]\).

B. \(\left[ {1;5} \right]\)

C. \(\left( { - \frac{3}{2}; + \infty } \right)\).

D. \(\mathbb{R}\).

* Đáp án

D

* Hướng dẫn giải

Ta có:  \( - 1 \le \sin x \le 1\)\( \Leftrightarrow  - 2 \le 2\sin x \le 2\) \( \Leftrightarrow 1 \le 2\sin x + 3 \le 5\).

Do đó \(2\sin x + 3 > 0\,\,\forall x \in \mathbb{R}\).

\( \Rightarrow \) Hàm số xác định trên \(\mathbb{R}\).

Vậy hàm phân thức trên liên tục trên \(\mathbb{R}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Nguyễn An Ninh

Số câu hỏi: 40

Copyright © 2021 HOCTAP247