A. \( + \infty \).
B. \( - \infty \).
C. 0
D. \(\frac{5}{6}\).
D
Ta có:
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x + x - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x} \right)\\ + \mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + x - {x^2}}}{{\sqrt {{x^2} + x} + x}}\\ + \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^3} - {x^3} + {x^2}}}{{{x^2} + x\sqrt[3]{{{x^3} - {x^2}}} + {{\sqrt[3]{{{x^3} - {x^2}}}}^2}}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{x}{{\sqrt {{x^2} + x} + x}}\\ + \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2}}}{{{x^2} + x\sqrt[3]{{{x^3} - {x^2}}} + {{\sqrt[3]{{{x^3} - {x^2}}}}^2}}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{x}} + 1}}\\ + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \sqrt[3]{{1 - \frac{1}{x}}} + {{\sqrt[3]{{1 - \frac{1}{x}}}}^2}}}\\ = \frac{1}{{1 + 1}} + \frac{1}{{1 + 1 + 1}} = \frac{5}{6}.\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247