Với \(a\) và \(b\) là hai đường thẳng chéo nhau tùy ý, mệnh đề nào sau đây sai?

Câu hỏi :

Với \(a\) và \(b\) là hai đường thẳng chéo nhau tùy ý, mệnh đề nào sau đây sai?

A. Tồn tại duy nhất một mặt phẳng \(\left( P \right)\) chứa \(b\) sao cho \(a \bot \left( P \right)\)

B. \(a\) và \(b\) là hai đường thẳng phân biệt

C. Tồn tại duy nhất một mặt phẳng \(\left( P \right)\) chứa \(b\) sao cho \(a//\left( P \right)\)

D. Nếu \(\Delta \) là đường thẳng vuông góc chung của \(a\) và \(b\) thì \(\Delta \) cắt cả hai đường thẳng \(a\) và \(b.\)

* Đáp án

A

* Hướng dẫn giải

Đáp án A: Giả sử \(a,b\) chéo nhau tùy ý và tồn tại mặt phẳng \(\left( P \right)\) chứa \(b\) và \(a \bot \left( P \right)\).

Khi đó \(a \bot b\). Diều này chưa chắc đúng do giả thiết chưa cho \(a \bot b\) nên A sai.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

Số câu hỏi: 40

Copyright © 2021 HOCTAP247