A. \(a = - \frac{{17}}{8}\)
B. \(a = \frac{{15}}{8}\)
C. \(a = - \frac{{15}}{8}\)
D. \(a = \frac{{17}}{8}\)
C
Ta có: \(f\left( 1 \right) = a + 2\).
+) \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = a + 2\).
+) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {x + 3} - 2}}{{{x^2} - 1}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x + 3 - 4}}{{\left( {{x^2} - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 1}}{{\left( {{x^2} - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}\) \( = \frac{1}{{\left( {1 + 1} \right)\left( {\sqrt {1 + 3} + 2} \right)}} = \frac{1}{8}\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \frac{1}{8}\)
Hàm số liên tục tại \(x = 1\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow a + 2 = \frac{1}{8}\) \( \Leftrightarrow a = - \frac{{15}}{8}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247