Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,C'D'\) và \(D'A'\). Khoảng cách giữa hai đường thẳng \(MN\) và \(PQ\) bằng

Câu hỏi :

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,C'D'\) và \(D'A'\). Khoảng cách giữa hai đường thẳng \(MN\) và \(PQ\) bằng

A. a

B. \(\frac{{a\sqrt 2 }}{2}\)

C. \(\frac{{a\sqrt 6 }}{2}\)

D. \(a\sqrt 2 \)

* Đáp án

C

* Hướng dẫn giải

Dễ thấy \(MN//AC//A'C'//PQ\).

Gọi \(E,F\) lần lượt là trung điểm \(A'B',AD\).

Khi đó \(MN \bot ME\) (vì \(ME \bot \left( {ABCD} \right)\)).

Mà \(MN \bot MF\) (tính chất trung điểm các cạnh hình vuông).

Do đó \(MN \bot \left( {MEQF} \right) \Rightarrow MN \bot MQ\) nên \(d\left( {MN,PQ} \right) = d\left( {Q,MN} \right) = QM\).

Tam giác \(MEQ\) vuông tại \(E\) có \(ME = a,EQ = \frac{1}{2}B'D' = \frac{{a\sqrt 2 }}{2}\) nên \(QM = \sqrt {M{E^2} + E{Q^2}} \)\( = \sqrt {{a^2} + \frac{{{a^2}}}{2}}  = \frac{{a\sqrt 6 }}{2}\)

Vậy \(d\left( {MN,PQ} \right) = \frac{{a\sqrt 6 }}{2}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

Số câu hỏi: 40

Copyright © 2021 HOCTAP247