Cho tứ diện \(S.ABC\) có \(G\) là trọng tâm tam giác \(ABC\), điểm \(M\) nằm trên đoạn \(SA\) sao cho \(AM = 2MS\). Mệnh đề nào dưới đây đúng?

Câu hỏi :

Cho tứ diện \(S.ABC\) có \(G\) là trọng tâm tam giác \(ABC\), điểm \(M\) nằm trên đoạn \(SA\) sao cho \(AM = 2MS\). Mệnh đề nào dưới đây đúng?

A. \(\overrightarrow {MG}  =  - \frac{1}{6}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

B. \(\overrightarrow {MG}  = \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

C. \(\overrightarrow {MG}  =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

D. \(\overrightarrow {MG}  = \frac{2}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}\overrightarrow {MG}  = \overrightarrow {MS}  + \overrightarrow {SG} \\ =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\left( {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC} } \right)\\ =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \\ = \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

Số câu hỏi: 40

Copyright © 2021 HOCTAP247