Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD

Câu hỏi :

Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Chứng minh: Góc giữa hai mặt phẳng (ACD) và (BCD) là AIB^

* Đáp án

* Hướng dẫn giải

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Tam giác BCD có BC = BD nên tam giác BCD cân tại B.

   - Do BI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ BI (1)

+) Tam giác ACD có AC = AD nên tam giác ACD cân tại A.

   - Do AI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ AI (2)

- Từ (1) và (2) ⇒ CD ⊥ (ABI).

- Ta có:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Suy ra góc giữa hai mặt phẳng (ACD) và (BCD) là 

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3).

Copyright © 2021 HOCTAP247