Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ

Câu hỏi :

Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

A. 252

B. 520

C. 480

D. 368

* Đáp án

* Hướng dẫn giải

Gọi x=abcd a,b,c,d ϵ {0,1,2,4,5,6,8}

Vì x là số chẵn nên d ϵ {0,,2,4,,6,8}

TH 1: d=0→ có 1 cách chọn d.

Với mỗi cách chọn d ta có 6 cách chọn a ϵ {1,2,4,5,6,8}

Với mỗi cách chọn a; d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}

Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}

Suy ra trong trường hợp này có 1.6.5.4=120 số.

TH 2: d≠0→d ϵ {2,4,6,8}→ có 4 cách chọn d

Với mỗi cách chọn d, do a≠0 nên ta có 5 cách chọn

a ϵ {1,2,4,5,6,8}\{d}

Với mỗi cách chọn a, d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}

Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}

Suy ra trong trường hợp này có 4.5.5.4 = 400 số.

Vậy có tất cả 120+400=520 số cần lập.

Chọn đáp án B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm ôn tập cuối năm Đại số và Giải tích 11 !!

Số câu hỏi: 51

Copyright © 2021 HOCTAP247