Cho hình chóp tứ giác đều S.BACD có cạnh đáy bằng a. Các điểm

Câu hỏi :

Cho hình chóp tứ giác đều S.BACD có cạnh đáy bằng a. Các điểm M; N; P lần lượt là trung điểm của SA; SB; SC. Mặt phẳng (MNP) cắt hình chóp theo 1 thiết diện có diện tích bằng?

A. a2

B. a22

C. a24

D. a28 

* Đáp án

C

* Hướng dẫn giải

+ Gọi Q là trung điểm của SD.

Tam giác SAD có M; Q  lần lượt là trung điểm của SA; SD suy ra  MQ // AD

Tam giác SBC có  N ; P  lần lượt là trung điểm của SB; SC suy ra  NP // BC

Mặt khác AD // BC  suy ra MQ // NP và  MQ= NP nên MNPQ là hình bình hành .

+  (MNP) và ( SAD) có NP // AD nên chúng cắt nhau theo giao tuyến Mx // AD// BC. – đó chính là MQ, thiết diện của hình chóp cắt bởi (MNP) là hình bình hành : MNPQ.

Do S. ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông cạnh a và có diện tích là:

S=a2

Tứ giác MNPQ là hình  vuông có độ dài cạnh là:  MN =AB2=  a2

Vậy diện tích  MNPQ là SMNPQ= a22=a24.

Chọn C.

Copyright © 2021 HOCTAP247