Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC

Câu hỏi :

Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo 1 thiết diện có diện tích là

A. a232.

B. a224.

C. a226.

D. a244. 

* Đáp án

B

* Hướng dẫn giải

Gọi M; N  lần lượt là trung điểm của AB và B C  suy ra  AN và MC cắt nhau tại G

Dễ thấy mặt phẳng (GCD)  cắt đường thắng AB  tại điểm M.

Suy ra tam giác MCD  là thiết diện của mặt phẳng  (GCD)  và tứ diện.

Tam giác ABD đều cạnh a, có M  là trung điểm AB suy ra  MD=  a32  (1)

Tam giác A BC đều cạnh a, có MC=  a32  (2)

Từ (1)  và (2) suy ra:  tam giác MCD cân tại M.

Gọi H là trung điểm của CD. Vì tam giác MCD cân tại M nên MH đồng thời là đường cao

Diện tích tam giác MCD là:  S= 12MH. CD

 

Chọn B.

 

Copyright © 2021 HOCTAP247