Cho hình chóp S. ABCD có đáy là hình bình hành tâm O có AC= a và

Câu hỏi :

Cho hình chóp S. ABCD có đáy là hình bình hành tâm O có AC= a và BD= b. Tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và đi qua điểm I  trên đoạn OA và AI = x ( 0< x< a) . Xác định thiết diện của hình chóp cắt bởi mặt phẳng (α) và tính diện tích thiết diện theo a; b và x?

A. b2x22a2

B. b2x232a2

C. b2x23a2 

D. Đáp án khác

* Đáp án

C

* Hướng dẫn giải

 + Tính diện tích thiết diện

Tam giác SBD đều cạnh BD = b nên có diện tích là: 

SSBD = BD2. 34= b2. 34

Hai tam giác MNP  và BDS đồng dạng theo tỉ số k = MNBD

Suy ra:SMNPSBDS = MNBD2

Do MN// BD nên : MNBD =  AIAO= 2xa

suy ra: SMNP =   2xa2. SBDS= b2x23a2

Chọn C. 

 

 

Copyright © 2021 HOCTAP247