Có bao nhiêu số chẵn gồm 4 chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

Câu hỏi :

Có bao nhiêu số chẵn gồm 4 chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

A. 252.

B. 520.

C. 480.

D. 368.

* Đáp án

* Hướng dẫn giải

Đáp án cần chọn là: B

Gọi x=abcd ; a,b,c,d ∈{0,1,2,4,5,6,8}

Vì x là số chẵn d∈{0,2,4,6,8}

TH 1: d=0⇒có 1 cách chọn d.

Với mỗi cách chọn d ta có 6 cách chọn a∈{1,2,4,5,6,8}

Với mỗi cách chọn a,da,d ta có 5 cách chọn b∈{1,2,4,5,6,8}∖{a}

Với mỗi cách chọn a,b,d ta có 4 cách chọn c∈{1,2,4,5,6,8}∖{a,b}

Suy ra trong trường hợp này có 1.6.5.4=120 số.

TH 2: d≠0⇒d∈{2,4,6,8}⇒có 4 cách chọn d

Với mỗi cách chọn d, do a≠0 nên ta có 5 cách chọn: a∈{1,2,4,5,6,8}∖{d}

Với mỗi cách chọn a,d ta có 5 cách chọn b∈{0,1,2,4,5,6,8}∖{a,d}

Với mỗi cách chọn a,b,d ta có 4 cách chọn c∈{0,1,2,4,5,6,8}∖{a,b,d}

Suy ra trong trường hợp này có 4.5.5.4=400 số.

Vậy có tất cả 120+400=520 số cần lập.

Copyright © 2021 HOCTAP247