Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt hai lần.

Câu hỏi :

Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt hai lần, chữ số 3 có mặt ba lần và các chữ số còn lại có mặt nhiều nhất một lần?

A. 23100.

B. 11430.

C. 11760.

D. 11340.

* Đáp án

* Hướng dẫn giải

Đáp án cần chọn là: D

Gọi số tự nhiên thỏa mãn bài toán có dạng abcdefg .

Xét trường hợp có cả chữ số 0 đứng đầu.

Số cách chọn vị trí cho chữ số 2 là C72

Số cách chọn vị trí cho chữ số 3 là C53

Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là A82

Do đó có C72.C53.A82=11760 số.

Xét trường hợp chữ số 0 đứng đầu.

a=0 nên có 1 cách chọn.

Số cách chọn vị trí cho chữ số 2 là C62

Số cách chọn vị trí cho chữ số 3 là C43

Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.

Do đó có 1.C62.C43.7=420 số.

Vậy có 11760−420=11340 số.

Copyright © 2021 HOCTAP247