Cho tập hợp A={0;1;2;3;4;5}. Gọi S là tập hợp các số có 3 chữ số khác nhau được lập thành từ các chữ số của tập A.

Câu hỏi :

Cho tập hợp A=0;1;2;3;4;5. Gọi S là tập hợp các số có 3 chữ số khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có chữ số cuối gấp đôi chữ số đầu.

A. 15.

B. 2325.

C. 225.

D. 45.

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Gọi số cần tìm của tập S có dạng abc. Trong đó a,b,c Aa0ab; bc; ca.

Khi đó

  • Số cách chọn chữ số a có 5 cách chọn vì a0.
  • Số cách chọn chữ số b có  5 cách chọn vì ba.
  • Số cách chọn chữ số c có 4 cách chọn vì  cacb.

Do đó tập S có 5.5.4 = 100 phần tử.

Không gian mẫu là chọn ngẫu nhiên  số từ tập S.

Suy ra số phần tử của không gian mẫu là Ω=C1001=100.

Gọi X là biến cố Số được chọn có chữ số cuối gấp đôi chữ số đầu .

Khi đó ta có các bộ số là 1b2 hoặc 2b4 thỏa mãn biến cố X và cứ mỗi bộ thì b có  4 cách chọn nên có tất cả 8 số thỏa yêu cầu.

Suy ra số phần tử của biến cố X là ΩX=8.

Vậy xác suất cần tính P(X)=ΩXΩ=8100=225.

Copyright © 2021 HOCTAP247