* Đáp án
* Hướng dẫn giải
Ta có ${U_C} = \frac{{U.{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_{L1}} - {Z_C}} \right)}^2}} }} = \frac{{U.{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_{L2}} - {Z_C}} \right)}^2}} }}$
→ ${Z_{{L_1}}} - {Z_C} = {Z_C} - {Z_{{L_2}}} \to {Z_C} = \frac{{{Z_{{L_1}}} + {Z_{{L_2}}}}}{2} = \frac{{\omega \left( {{L_1} + {L_2}} \right)}}{2} = 0,4\omega .$
Có ${U_L} = \frac{{U.{Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}$ và $L \to \infty $ thì ${U_L} \to U = {U_1}$ (từ đồ thị)
${U_{L3}} = {U_{L4}} \to \frac{{U.{Z_{L3}}}}{{\sqrt {{R^2} + {{\left( {{Z_{L3}} - {Z_C}} \right)}^2}} }} = \frac{{U.{Z_{L4}}}}{{\sqrt {{R^2} + {{\left( {{Z_{L4}} - {Z_C}} \right)}^2}} }} = 1,5{U_1}$
→ $1,{5^2}\left[ {{R^2} + {{\left( {{Z_{L3}} - {Z_C}} \right)}^2}} \right] - Z_{L3}^2 = 1,{5^2}\left[ {{R^2} + {{\left( {{Z_{L4}} - {Z_C}} \right)}^2}} \right] - Z_{L4}^2$ = 0
→ ${Z_{L3}} + {Z_{L4}} = \frac{{1,{5^2}.2{Z_C}}}{{1,{5^2} - 1}}$ $ \to {L_3} + {L_4} = \frac{{1,{5^2}.2.0,4}}{{1,{5^2} - 1}} = 1,44H.$