* Đáp án
* Hướng dẫn giải
Theo bài ra ta có ${I_1} = {I_2} \to {Z_1} = {Z_2}$
→$\left| {{Z_{{L_1}}} - {Z_{C{}_1}}} \right| = \left| {{Z_{{L_2}}} - {Z_{{C_2}}}} \right|\,\, \Rightarrow \,\,{Z_{{L_1}}} - {Z_{{C_1}}} = {Z_{{C_2}}} - {Z_{{L_2}}}\,\, \Rightarrow \,\,{Z_{{L_1}}} + {Z_{{L_2}}} = {Z_{{C_1}}} + {Z_{{C_2}}} = 40 + 250 = 290\left( \Omega \right)$ (1)
Ta có: $L.{\omega _1} = 40$\,\,và \,\,$L.{\omega _2} = 250\,\, \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{{\omega _1}.{\omega _2} = \frac{{40.250}}{{{L^2}}} = \frac{{{{10}^4}}}{{{L^2}}}}\\
{L\left( {{\omega _1} + {\omega _2}} \right) = 290\, \Rightarrow \,{\omega _1} + {\omega _2} = \frac{{290}}{L}}
\end{array}} \right.$
Từ (1) ta có: $\frac{1}{C}\left( {\frac{1}{{{\omega _1}}} + \frac{1}{{{\omega _2}}}} \right) = 290\,\, \Rightarrow \,\frac{1}{C}\left( {\frac{{{\omega _1} + {\omega _2}}}{{{\omega _1}.{\omega _2}}}} \right) = 290\,\, \Rightarrow \,\,\frac{1}{C}.\frac{{290}}{L}.\frac{{{L^2}}}{{{{10}^4}}} = 290\,\,\, \Rightarrow \,\,\frac{L}{C} = {10^4}$
Vậy: ${Z_C} = \frac{1}{{{\omega _{CH}}.C}} = \frac{1}{{\frac{1}{{\sqrt {LC} }}.C}} = \sqrt {\frac{L}{C}} = 100\,\left( \Omega \right).$