Bài 19 trang 49 SGK Toán 9 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Đố em biết vì sao khi \(a > 0\) và phương trình \(a{x^2} + bx + c = 0\) vô nghiệm thì\(a{x^2} + bx + c > 0\) với mọi giá trị của \(x \)?

Hướng dẫn giải

+) Phương trình vô nghiệm khi \(\Delta < 0\).

+) Biến đổi  \(ax^2+bx+c=a\left ( x + \dfrac{b}{2a} \right )^{2}-\dfrac{b^{2}-4ac}{4a}\) rồi đánh giá từng hạng tử.

Lời giải chi tiết

Khi \(a > 0\) và phương trình vô nghiệm thì \(\Delta = b{^2} - 4ac<0\).

Do đó: \(-\dfrac{b^{2}-4ac}{4a} > 0\) 

Lại có: \(a{x^2} + bx + c=a\left ( x + \dfrac{b}{2a} \right )^{2}-\dfrac{b^{2}-4ac}{4a}\) 

                                 \(=a\left ( x + \dfrac{b}{2a} \right )^{2}+ {\left(-\dfrac{b^{2}-4ac}{4a}\right)}\)

Vì \(a\left ( x + \dfrac{b}{2a} \right )^{2} \ge 0\)  với mọi \(x\).

   và có  \(-\dfrac{b^{2}-4ac}{4a} > 0\) 

Vì tổng của số không âm và số dương là một số dương do đó

\(a\left ( x + \dfrac{b}{2a} \right )^{2}+ {\left(\dfrac{b^{2}-4ac}{4a}\right)} >0\)  với mọi \(x\).

Hay \(a{x^2} + bx + c >0\) với mọi \(x\).

Copyright © 2021 HOCTAP247