Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến \(A\) của đường tròn \((O')\) cắt đường tròn \((O)\) tại điểm thứ hai \(P\). Tia \(PB\) cắt đường tròn \((O')\) tại \(Q\). Chứng minh đường thẳng \(AQ\) song song với tiếp tuyến tại \(P\) của đường tròn \((O).\)
+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.
Lời giải chi tiết
Nối \(AB\).
Xét đường tròn \((O')\) ta có: \(\widehat {AQB} = \widehat {PAB}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(AB\)). (1)
Xét đường tròn \((O)\) ta có: \(\widehat {PAB} = \widehat {BPx}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(PB\)). (2)
Từ (1) và (2) có \(\widehat {AQB} = \widehat {BPx} \, (= \widehat {PAB}).\)
Mà hai góc này là hai góc so le trong \(\Rightarrow AQ // Px. \)
Copyright © 2021 HOCTAP247