Bài 5 trang 159 SGK Đại số 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Nêu các tính chất của bất đẳng thức. Áp dụng một trong các  tính chất đó, hãy so sánh các số \({2^{3000}}\) và \({3^{2000}}\).

Hướng dẫn giải

- Các tính chất của bất đẳng thức

TC1. ( Tính chất bắc cầu): \(\left\{ \matrix{A < B \hfill \cr B < C \hfill \cr} \right. \Rightarrow A < C\)

TC2. (Quy tắc cộng): \(A < B ⇔ A + C < B + C\)

TC3. (Quy tắc cộng hai bất đẳng thức dùng chiều) \(\left\{ \matrix{A < B \hfill \cr C < D \hfill \cr} \right. \Rightarrow A + C < B + D\)

TC4. (Quy tắc nhân): \(\left\{ \matrix{A < B \hfill \cr C > 0 \hfill \cr} \right. \Leftrightarrow AC < BC\)\(\left\{ \matrix{A < B \hfill \cr C < 0 \hfill \cr} \right. \Leftrightarrow AC > BC\)

TC5. (Quy tắc nhân hai bất đẳng thức): \(\left\{ \matrix{0 < A < B \hfill \cr 0 < C < D \hfill \cr} \right. \Rightarrow AC < B{\rm{D}}\)

TC6. (Quy tắc lũy thừa, khai căn)

Với \(A, B > 0, n ∈\mathbb N^*\) ta có:

                    \( A < B  \Leftrightarrow  A^n< B^n\)                     

                     \(A < B \Leftrightarrow \root n \of A  < \root n \of B \).

- Áp dụng tính chất: \(0<a^n<b^n\) với \(n∈ \mathbb N^*\)

\(\eqalign{
& {2^{3000}} = {\left( {{2^3}} \right)^{1000}} = {8^{1000}} \cr
& {3^{2000}} = {\left( {{3^2}} \right)^{1000}} = {9^{1000}} \cr} \)

\(8<9\)

Do đó: \({2^{3000}} < {3^{2000}}.\)

Copyright © 2021 HOCTAP247