Bài 7 trang 221 SGK Đại số 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Cho phương trình: \({x^2} + 2(\sqrt 3  + 1)x + 2\sqrt 3  = 0\)

a) Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

b) Tính nghiệm gần đúng của phương trình (chính xác đến hàng phần trăm).

Hướng dẫn giải

a) Theo định lý Vi-ét, ta có:

\(\eqalign{
& \left\{ \matrix{
{x_1} + {x_2} = - 2(\sqrt 3 + 1) \hfill \cr
{x_1}{x_2} = 2\sqrt 3 \,\,\,(\Delta ' > 0) \hfill \cr} \right. \cr
& \Rightarrow x_1^2 + x_2^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2} \cr&= 4{(\sqrt 3 + 1)^2} - 4\sqrt 3 = 4(4 + \sqrt 3 ) \approx 22,93 \cr} \) 

b) \(x_1≈ -0, 73;x_2≈ -4, 73\)

Copyright © 2021 HOCTAP247