* Đáp án
* Hướng dẫn giải
$h\frac{c}{{{\lambda _1}}} = h\frac{c}{{{\lambda _0}}} + e{U_1}\,\,\, \Rightarrow \,\,{U_1} = \frac{{hc}}{e}\left( {\frac{1}{{{\lambda _1}}} - \frac{1}{{{\lambda _0}}}} \right) = \frac{{hc}}{{e.{\lambda _0}}}\,\,\,\,\,\,\,\,(1)$
$h\frac{c}{{{\lambda _2}}} = h\frac{c}{{{\lambda _0}}} + e{U_2}\,\,\, \Rightarrow \,\,{U_2} = \frac{{hc}}{e}\left( {\frac{1}{{{\lambda _2}}} - \frac{1}{{{\lambda _0}}}} \right) = \frac{{3hc}}{{e.{\lambda _0}}}\,\,\,\,\,\,\,\,(2)$
Từ (1) và (2) $ \Rightarrow \frac{{{U_1}}}{{{U_2}}} = \frac{1}{3}$.