* Đáp án
* Hướng dẫn giải
+ Khi $C = {C_1}$
Ta có ${U_{MB}} = \frac{{U\sqrt {{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}{{\sqrt {{R^2} + 2rR + {r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{U}{{\sqrt {1 + \frac{{{R^2} + 2rR}}{{{r^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}} }}$
→ ${U_{MB\min }} \leftrightarrow {Z_L} = {Z_C}$ → cộng hưởng.
→ ${U_1} = {U_{MB\min }} = \frac{U}{{\sqrt {1 + \frac{{{R^2} + 2rR}}{{{r^2}}}} }} = \frac{U}{{10}}$ (*)
+ Khi $C = {C_2} = \frac{{{C_1}}}{2} \to {Z_{C2}} = 2{Z_{C1}} = 2{Z_L}$ (1)
${U_{C\max }} \to {Z_{C2}} = \frac{{{{\left( {R + r} \right)}^2} + Z_L^2}}{{{Z_L}}}$(2)
Từ (1)(2) → $Z_L^2 = {\left( {R + r} \right)^2} \to {Z_L} = 100\Omega .$.
${U_2} = {U_{C\max }} = \frac{{U\sqrt {{{\left( {R + r} \right)}^2} + Z_L^2} }}{{R + r}} = \frac{{U\sqrt {{{\left( {90 + 10} \right)}^2} + {{100}^2}} }}{{90 + 10}} = U\sqrt 2 $.(**)
Từ (*)(**) → $\frac{{{U_2}}}{{{U_1}}} = \frac{{U\sqrt 2 .10}}{U} = 10\sqrt 2 .$