Cho phương trình \(x^2 – x – 2 = 0\)
a) Giải phương trình
b) Vẽ hai đồ thị \(y = x^2\) và \(y = x + 2\) trên cùng một hệ trục tọa độ.
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.
+) Giải phương trình bậc 2 bằng công thức nghiệm hoặc công thức nghiệm thu gọn. Tính \(\Delta \left( {\Delta '} \right)\)
+) Vẽ đồ thị hàm số, ta lập bảng giá trị x, y tương ứng sau đó nối các điểm lại ta được đồ thị hàm số cần tìm.
Lời giải chi tiết
a) Giải phương trình: \(x^2 – x – 2 = 0\)
\(\Delta = (-1)^2– 4.1.(-2) = 1 + 8 > 0\)
\(\sqrt\Delta= \sqrt9 = 3\)
\(\Rightarrow {x_1} = -1; {x_2}= 2\)
b) Vẽ đồ thị hàm số
- Hàm số \(y = x^2\)
+ Bảng giá trị:
- Hàm số \(y = x + 2\)
+ Cho \(x = 0 ⇒ y = 2\) được điểm \(A(0;2)\)
+ Cho \(x = -2 ⇒ y = 0\) được điểm \(B(-2;0)\)
Đồ thị hàm số:
c) Ta có phương trình hoành độ giao điểm của hai đồ thị là:
\({x^2} = x + 2 \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left\{ \matrix{{x_1} = - 1 \hfill \cr {x_2} = 2 \hfill \cr} \right.\)
Điều này chứng tỏ rằng đồ thị đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là \(x = -1; x= 2\). Hai giá trị này cũng chính là nghiệm của phương trình \(x^2 - x - 2 = 0\) ở câu a).
Copyright © 2021 HOCTAP247