Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải các phương trình bằng cách đặt ẩn phụ:

a) \(2{\left( {{x^2} - 2{\rm{x}}} \right)^2} + 3\left( {{x^2} - 2{\rm{x}}} \right) + 1 = 0\) 

b) \({\left( {x + {1 \over x}} \right)^2} - 4\left( {x + {1 \over x}} \right) + 3 = 0\)  

Hướng dẫn giải

Đặt ẩn phụ sau đó giải phương trình bậc 2 theo ẩn mới rồi tìm nghiệm.

Lời giải chi tiết

a) \(2{\left( {{x^2} - 2{\rm{x}}} \right)^2} + 3\left( {{x^2} - 2{\rm{x}}} \right) + 1 = 0\) 

Đặt \(x^2 – 2x = t\). Khi đó (1) \(⇔ 2t^2+ 3t +1 = 0 \) (*)

Phương trình (*) có \(a – b + c = 2 – 3 + 1 = 0\)

Vậy phương trình (*) có hai nghiệm:  

- Với \(t = -1\). Ta có

\(\eqalign{
& {x^2} - 2{\rm{x}} = - 1 \Leftrightarrow {x^2} - 2{\rm{x}} + 1 = 0 \cr
& \Rightarrow {x_1} = {x_2} = 1 \cr}\)

- Với \(t =  - {1 \over 2}\). Ta có:  

\(\eqalign{
& {x^2} - 2{\rm{x}} = - {1 \over 2} \Leftrightarrow 2{{\rm{x}}^2} - 4{\rm{x}} + 1 = 0 \cr
& \Delta ' = {\left( { - 2} \right)^2} - 2.1 = 4 - 2 = 2 \cr
& \sqrt {\Delta '} = \sqrt 2 \cr
& \Rightarrow {x_3} = {{ - \left( { - 2} \right) + \sqrt 2 } \over 2} = {{2 + \sqrt 2 } \over 2} \cr
& {x_4} = {{ - \left( { - 2} \right) - \sqrt 2 } \over 2} = {{2 - \sqrt 2 } \over 2} \cr} \)

Vậy tập nghiệm của phương trình là: \( S = \left\{ {1;\frac{{2 + \sqrt 2 }}{2};\frac{{2 - \sqrt 2 }}{2}} \right\} \)

b) \({\left( {x + {1 \over x}} \right)^2} - 4\left( {x + {1 \over x}} \right) + 3 = 0\) 

Điều kiện: \(x \ne 0\)

Đặt \(x + {1 \over x} = t\) ta có phương trình: \(t^2 – 4t + 3 = 0\)

Phương trình có \(a + b + c = 1 – 4 + 3 =0\) nên có 2 nghiệm  \({t_1} =1, {t_2}=3\)

Với  \({t_1} =1\), ta có:

\(\eqalign{
& x + {1 \over x} = 1 \cr
& \Leftrightarrow {x^2} - x + 1 = 0 \cr
& \Delta = {\left( { - 1} \right)^2} - 4 = - 3 < 0 \cr} \) 

Phương trình vô nghiệm

Với \({t_2}= 3\), ta có

\(\eqalign{
& x + {1 \over x} = 3 \cr
& \Leftrightarrow {x^2} - 3{\rm{x}} + 1 = 0 \cr
& \Delta = {\left( { - 3} \right)^2} - 4 = 5 \cr
& \Rightarrow {x_1} = {{3 + \sqrt 5 } \over 2};{x_2} = {{3 - \sqrt 5 } \over 2}(TM) \cr} \) 

Vậy phương trình có 2 nghiệm: \( \Rightarrow {x_1} = {{3 + \sqrt 5 } \over 2};{x_2} = {{3 - \sqrt 5 } \over 2}\)

Copyright © 2021 HOCTAP247