Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:

a) \(12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\)                  

b) \(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} =  - 3\) 

c) \({x^2} + x - 2 + \sqrt 2  = 0;{x_1} =  - \sqrt 2 \)         

d) \({x^2} - 2m{\rm{x}} + m - 1 = 0;{x_1} = 2\)

Hướng dẫn giải

Phương pháp: Sử dụng hệ thức Viet để tìm nghiệm còn lại của phương trình:

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \frac{b}{a}\\
{x_1}.{x_2} = \frac{c}{a}
\end{array} \right.\)

Lời giải chi tiết

a) \(12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\)              

Ta có: \({x_1}{x_2} = {1 \over {12}} \Leftrightarrow {1 \over 2}{x_2} = {1 \over {12}} \Leftrightarrow {x_2} = {1 \over 6}\)

b) \(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} =  - 3\) 

Ta có: \({x_1}.{x_2} = {{ - 39} \over 2} \Leftrightarrow  - 3{{\rm{x}}_2} = {{ - 39} \over 2} \Leftrightarrow {x_2} = {{13} \over 2}\)

c) \({x^2} + x - 2 + \sqrt 2  = 0;{x_1} =  - \sqrt 2 \)       

Ta có:  

\(\eqalign{
& {x_1}.{x_2} = \sqrt 2 - 2 \cr
& \Leftrightarrow - \sqrt 2 .{x_2} = \sqrt 2 - 2 \cr
& \Leftrightarrow {x_2} = {{\sqrt 2 - 2} \over { - \sqrt 2 }} = {{\sqrt 2 \left( {1 - \sqrt 2 } \right)} \over { - \sqrt 2 }} = \sqrt 2 - 1 \cr} \)

d) \({x^2} - 2m{\rm{x}} + m - 1 = 0;{x_1} = 2\)

Vì \({x_1} = 2\) là một nghiệm của pt (1) nên

\(2^2- 2m.2 + m - 1 = 0\)

\(⇔ m = 1\)

Khi \(m = 1\) ta có: \({x_1}{x_2} = m - 1\) (hệ thức Vi-ét)

\(⇔ 2.{x_2}= 0\) (vì \({x_1} = 2\) và \(m = 1\))

\(⇔ {x_2}= 0\)

Copyright © 2021 HOCTAP247