A. \(I = x\tan x + \frac{1}{{{\rm{co}}{{\rm{s}}^2}x}} + \frac{2}{{{\rm{cos}}x}} + C\)
B. \(I = x\tan x + \ln \left| {\cos x} \right| + \frac{2}{{{\rm{cos}}x}} + C\)
C. \(I = x\tan x + \ln \left| {\cos x} \right| - \frac{2}{{{\rm{cos}}x}} + C\)
D. \(I = x\tan x - \frac{1}{{{\rm{co}}{{\rm{s}}^2}x}} - \frac{2}{{{\rm{cos}}x}} + C\)
C
Ta có \(\begin{array}{l}
I = \int {\left( {x - 2\sin x} \right)\frac{{dx}}{{{\rm{co}}{{\rm{s}}^2}x}}} = \int {x\frac{{dx}}{{{\rm{co}}{{\rm{s}}^2}x}}} - \int {2\sin x\frac{1}{{{\rm{co}}{{\rm{s}}^2}x}}} dx= {I_1} - {I_2}
\end{array}\)
Xét \({I_1} = \int {x\frac{{dx}}{{{\rm{co}}{{\rm{s}}^2}x}}} \)
Đặt \(\left\{ \begin{array}{l}
u = x\\
dv = \frac{{dx}}{{{{\cos }^2}x}}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = \tan x
\end{array} \right.\)
\(\begin{array}{l}
{I_1} = x\tan x - \int {\tan xdx = x\tan x - \int {\frac{{\sin x}}{{\cos x}}} dx} \\
= x\tan x - \int {\frac{{d\left( {\sin x} \right)}}{{\cos x}} = } x\tan x + \ln \cos x + C
\end{array}\)
\){I_2} = \int {2\sin x\frac{1}{{{{\cos }^2}x}}} dx = \int {\frac{{ - 2d\left( {\cos x} \right)}}{{{{\cos }^2}x}}} = \frac{2}{{\cos x}} + C\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247