A. \(V=\frac{1}{6}\)
B. \(V=\frac{1}{12}\)
C. \(V=\frac{1}{3}\)
D. \(V=\frac{2}{3}\)
A. \(h = \frac{a}{2}\)
B. \(h = a\)
C. \(h = \frac{3a}{4}\)
D. \(h = 3a\)
A. \(V_{1} =\frac{V}{4}\)
B. \(V_{1} =\frac{V}{3}\)
C. \(V_{1} =\frac{V}{2}\)
D. \(V_{1} =\frac{2}{3}V\)
A. \(S=2200\sqrt {346} \,\left( {{m^2}} \right)\)
B. \(S=4400\sqrt {346} \left( {{m^2}} \right)\)
C. \(S=2420000\left( {{m^3}} \right)\)
D.
A. \(h = \frac{{\sqrt 3 a}}{2}\)
B. \(h = \frac{{a\sqrt 3 }}{7}\)
C. \(h = \frac{{a\sqrt {21} }}{2}\)
D. \(h = \frac{{3a}}{5}\)
A. \(d = \frac{{6{\rm{a}}\sqrt {195} }}{{65}}\)
B. \(d = \frac{{{\rm{a}}\sqrt {195} }}{{65}}\)
C. \(d = \frac{{4{\rm{a}}\sqrt {195} }}{{65}}\)
D. \(d = \frac{{8{\rm{a}}\sqrt {195} }}{{195}}\)
A. \(V = {a^3}\)
B. \(V = \frac{{{a^3}}}{3}\)
C. \(V = \frac{{2{a^3}}}{3}\)
D. \(V = 3a^3\)
A. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)
B. \(V = \frac{{{a^3}\sqrt 3 }}{2}\)
C. \(V = {a^3}\sqrt 3\)
D. \(V = 2{a^3}\sqrt 3\)
A. \(d = \frac{{a\sqrt 3 }}{2}\)
B. \(d = \frac{{a\sqrt 3 }}{4}\)
C. \(d = \frac{{a\sqrt 3 }}{3}\)
D. \(d = a\sqrt 3\)
A. \(k = \frac{{ - 1 + \sqrt 3 }}{2}\)
B. \(k = \frac{{ - 1 + \sqrt 5 }}{2}\)
C. \(k = \frac{{ - 1 + \sqrt 2 }}{2}\)
D. \(k = \frac{{ - 1 + \sqrt 5 }}{2}\)
A. \(\frac{40}{3}\)
B. \(\frac{80}{3}\)
C. \(\frac{20}{3}\)
D. 24
A. \(\frac{1}{6}\)
B. \(\frac{1}{12}\)
C. \(\frac{{\sqrt 2 }}{{12}}\)
D. \(\frac{{\sqrt 3 }}{{12}}\)
A. \({V_{\max }} = \frac{{130}}{3}.\)
B. \({V_{\max }} = \frac{{128}}{3}.\)
C. \({V_{\max }} = \frac{{125}}{3}.\)
D. \({V_{\max }} = \frac{{250}}{3}.\)
A. \({V_{\max }} = \frac{{2\sqrt 3 }}{9}.\)
B. \({V_{\max }} = \frac{{2\sqrt 3 }}{3}.\)
C. \({V_{\max }} = \frac{{2\sqrt 3 }}{27}.\)
D. \({V_{\max }} = \frac{{4\sqrt 3 }}{27}.\)
A. \({V_{\max }} = \frac{{8{a^3}}}{3}.\)
B. \({V_{\max }} = \frac{{4\sqrt6{a^3}}}{3}.\)
C. \({V_{\max }} = 8a^3\)
D. \({V_{\max }} = 4\sqrt6a^3\)
A. \({V_{\max }} = \frac{1}{4}.\)
B. \({V_{\max }} = \frac{1}{3}.\)
C. \({V_{\max }} = \frac{1}{12}.\)
D. \({V_{\max }} = \frac{1}{6}.\)
A. \({V_{\max }} = \frac{{\sqrt 3 }}{{12}}.\)
B. \({V_{\max }} = \frac{{\sqrt 2 }}{{12}}.\)
C. \({V_{\max }} = \frac{{2\sqrt 3 }}{{27}}.\)
D. \({V_{\max }} = \frac{{\sqrt 3 }}{{27}}.\)
A. \({V_{\max }} = \frac{5}{8}.\)
B. \({V_{\max }} = \frac{5}{4}.\)
C. \({V_{\max }} = \frac{2}{3}.\)
D. \({V_{\max }} = \frac{4}{3}.\)
A. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{3}\)
B. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{8}\)
C. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{9}\)
D. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{27}\)
A. \(\frac{40}{3}\)
B. 40
C. 80
D. \(\frac{80}{3}\)
A. \({V_{\max }} = \frac{1}{4}.\)
B. \({V_{\max }} = \frac{1}{8}.\)
C. \({V_{\max }} = \frac{1}{12}.\)
D. \({V_{\max }} = \frac{1}{16}.\)
A. \(x = 3\sqrt 2 .\)
B. \(x = \sqrt 6 .\)
C. \(x = 2\sqrt 3 .\)
D. \(x = 2\sqrt 7 .\)
A. \({V_{\max }} = \frac{{{a^3}}}{6}.\)
B. \({V_{\max }} = \frac{{{a^3}}}{8}.\)
C. \({V_{\max }} = \frac{{{a^3}}}{24}.\)
D. \({V_{\max }} = \frac{{{a^3}}}{32}.\)
A. \({V_{\max }} = \frac{{abc\sqrt 2 }}{4}.\)
B. \({V_{\max }} = \frac{{abc\sqrt 2 }}{8}.\)
C. \({V_{\max }} = \frac{{abc\sqrt 2 }}{24}.\)
D. \({V_{\max }} = \frac{{abc\sqrt 2 }}{12}.\)
A. \({V_{\max }} = \frac{{{a^3}}}{6}.\)
B. \({V_{\max }} = \frac{{{a^3}\sqrt 6 }}{{72}}.\)
C. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{{24}}.\)
D. \({V_{\max }} = \frac{{{a^3}}}{{48}}.\)
A. \({V_{\max }} = \frac{{56\sqrt 3 }}{9}.\)
B. \({V_{\max }} = \frac{{80\sqrt 3 }}{9}.\)
C. \({V_{\max }} = \frac{{70\sqrt 3 }}{9}.\)
D. \({V_{\max }} = \frac{{64\sqrt 3 }}{9}.\)
A. \(\sqrt[3]{{4V}}.\)
B. \(\sqrt[3]{V}.\)
C. \(\sqrt[3]{{2V}}.\)
D. \(\sqrt[3]{{6V}}.\)
A. \(x = \frac{{\sqrt 3 }}{3}.\)
B. \(x = \frac{{\sqrt 2 }}{2}.\)
C. \(x = \frac{{\sqrt 6 }}{2}.\)
D. \(x = \frac{{\sqrt 3 }}{2}.\)
A. \(\frac{1}{3}\)
B. \(\frac{\sqrt3}{3}\)
C. \(\frac{\sqrt2}{2}\)
D. \(\frac{2}{3}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247