Trong không gian với hệ tọa độ \(Oxyz\) cho \(\left( P \right):2x + y - 2z + 9 = 0,\left( Q \right):x - y + z + 4 = 0\) và đường t

Câu hỏi :

Trong không gian với hệ tọa độ \(Oxyz\) cho \(\left( P \right):2x + y - 2z + 9 = 0,\left( Q \right):x - y + z + 4 = 0\) và đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1},\) một phương trình mặt cầu có tâm thuộc d tiếp xúc với \((P)\) và cắt \((Q)\) theo một đường tròn có chu vi \(2\pi \) là:

A. \({x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 4} \right)^2} = 4\)

B. \({\left( {x + 2} \right)^2} + {\left( {y + 5} \right)^2} + {\left( {z - 2} \right)^2} = 4\)

C. \({\left( {x + 3} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 7} \right)^2} = 4\)

D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} + {z^2} = 4\)

* Đáp án

C

Copyright © 2021 HOCTAP247