A. \(\dfrac{{{a^3}\sqrt 3 }}{4}.\)
B. \(\dfrac{{{a^3}\sqrt 3 }}{3}.\)
C. \(\dfrac{{{a^3}\sqrt 3 }}{{12}}.\)
D. \(\dfrac{{{a^3}\sqrt 3 }}{8}.\)
D
Gọi \(H\) là trung điểm của \(AB \Rightarrow A'H \bot \left( {ABC} \right)\).
\( \Rightarrow \angle \left( {AA';\left( {ABC} \right)} \right) = \angle \left( {AA';AH} \right) = \widehat {A'AH} = {30^0}\).
Tam giác ABC đều cạnh \(a \Rightarrow AH = \dfrac{{a\sqrt 3 }}{2}\).
Xét tam giác vuông A'AH có: \(A'H = AH.\tan {30^0} = \dfrac{{a\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{3} = \dfrac{a}{2}\).
Tam giác ABC đều cạnh \(a \Rightarrow {S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).
Vậy \(V = A'H.{S_{\Delta ABC}} = \dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{8}.\)
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247