A. \(\dfrac{{{a^3}}}{4}\)
B. \(\dfrac{{{a^3}}}{{12}}\)
C. \(\dfrac{{{a^3}}}{8}\)
D. \(\dfrac{{{a^3}}}{{24}}\)
B
Gọi \(H\) là trọng tâm tam giác ABC. Vì S.ABC là hình chóp tam giác đều nên \(SH \bot \left( {ABC} \right)\)
Gọi \(D\) là trung điểm của \(BC \Rightarrow AH = \dfrac{2}{3}AD\)
Vì AD là đường trung tuyến trong tam giác ABC đều cạnh \(a\) nên \(AD = \dfrac{{a\sqrt 3 }}{2}\)\( \Rightarrow AH = \dfrac{2}{3}AD\)\( = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)
Ta có \(SH \bot \left( {ABC} \right) \Rightarrow \) góc giữa cạnh bên SA và đáy là góc giữa SA và AH, hay là góc SAH
Theo đề bài ta có
\(\widehat {SAH} = {45^0} \Rightarrow \Delta SAH\) vuông cân tại \(H \Rightarrow SH = AH = \dfrac{{a\sqrt 3 }}{3}\)
Diện tích tam giác ABC đều cạnh \(a\) là \(\dfrac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối chóp \({V_{S.ABC}} = \dfrac{1}{3}{S_{ABC}}.SH\)\( = \dfrac{1}{3}.\dfrac{{{a^2}\sqrt 3 }}{4}.\dfrac{{a\sqrt 3 }}{3}\)\( = \dfrac{{{a^3}}}{{12}}\)
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247