Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,{\mkern 1mu} {\mkern 1mu} BC = 2AB = 2a.\) Cạnh bên SC vuông góc với đáy, góc giữa SA và đáy bằng \({60^0}.\) Thể tích khối...

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,{\mkern 1mu} {\mkern 1mu} BC = 2AB = 2a.\) Cạnh bên SC vuông góc với đáy, góc giữa SA và đáy bằng \({60^0}.\) Thể tích khối chóp đó bằng:

A. \(\dfrac{{3{a^3}\sqrt 3 }}{2}\) 

B. \(\dfrac{{{a^3}\sqrt 5 }}{2}\)

C. \(\dfrac{{{a^3}\sqrt 3 }}{6}\) 

D. \(\dfrac{{{a^3}\sqrt 3 }}{2}\) 

* Đáp án

D

* Hướng dẫn giải

Áp dụng định lý Pitago cho \(\Delta ABC\) vuông tại \(A\) ta có:

\(AC = \sqrt {B{C^2} - A{B^2}} {\rm{\;}} = \sqrt {4{a^2} - {a^2}} {\rm{\;}} = a\sqrt 3 .\)

\( \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.a.a\sqrt 3 {\rm{\;}} = \dfrac{{{a^2}\sqrt 3 }}{2}.\)

Ta có:\(SC \bot \left( {ABC} \right) \Rightarrow SC \bot AC\)

\( \Rightarrow AC\) là hình chiếu của SA trên \(\left( {ABC} \right)\)

\( \Rightarrow \angle \left( {SA,{\mkern 1mu} {\mkern 1mu} \left( {ABC} \right)} \right) = \angle \left( {SA,{\mkern 1mu} {\mkern 1mu} AC} \right) = \angle SAC = {60^0}\)

Xét \(\Delta SAC\) vuông tại \(C\) ta có: \(SC = CA.\tan {60^0} = a\sqrt 3 .\sqrt 3 {\rm{\;}} = 3a.\)

\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SC.{S_{\Delta ABC}} = \dfrac{1}{3}.3a.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{2}.\)

Chọn D.

Copyright © 2021 HOCTAP247