Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Câu hỏi :

Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

A. 3

B. 2

C. 5

D. 4

* Đáp án

A

* Hướng dẫn giải

Xét hàm số: \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\)

TXĐ: \(D = \left( {2; + \infty } \right)\backslash \left\{ {\dfrac{7}{2}} \right\}.\)

\(\mathop {\lim }\limits_{x \to \dfrac{7}{2}} \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\) \( = \mathop {\lim }\limits_{x \to \dfrac{7}{2}} \dfrac{1}{{\sqrt {x - 2} \left( {x + 2} \right)\left( {2x - 7} \right)}} = \infty \) \( \Rightarrow x = \dfrac{7}{2}\) là đường TCĐ của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}} = \mathop {\lim }\limits_{x \to 2} \dfrac{1}{{\left( {x + 2} \right)\sqrt {x - 2} \left( {2x - 7} \right)}} = \infty \) \( \Rightarrow x = 2\) là đường TCĐ của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\) \( = \mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } \dfrac{1}{{\sqrt {x - 2} \left( {x + 2} \right)\left( {2x - 7} \right)}} = 0\) \( \Rightarrow y = 0\) là TCN của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.

Chọn A.

Copyright © 2021 HOCTAP247