A. 1
B. 2
C. 0
D. 3
A
\(\begin{array}{*{20}{l}}{f'\left( x \right) = {x^2}\left( {{x^2} - 4} \right)\left( {{x^2} - 3x + 2} \right)\left( {x - 3} \right)}\\{{\mkern 1mu} f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = {\rm{\;}} \pm 2}\\{x = 1}\\{x = 2{\mkern 1mu} }\\{x = 3{\mkern 1mu} }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = {\rm{\;}} \pm 2}\\{x = 1{\mkern 1mu} }\\{x = 3{\mkern 1mu} }\end{array}} \right.}\end{array}\)
Trong đó \(x = {\rm{\;}} - 2,{\mkern 1mu} {\mkern 1mu} x = 1,{\mkern 1mu} {\mkern 1mu} x = 3\) là các nghiệm đơn, \(x = 0,{\mkern 1mu} {\mkern 1mu} x = 2\) là nghiệm bội 2.
Ta có bảng xét dấu \(f'\left( x \right)\) như sau:
Vậy hàm số đạt cực đại tại 1 điểm là \(x = 1\).
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247