Cho hàm số \(f\left( x \right) = {\log _{0,5}}\left( {6x - {x^2}} \right).\) Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là

Câu hỏi :

Cho hàm số \(f\left( x \right) = {\log _{0,5}}\left( {6x - {x^2}} \right).\) Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là

A. \(\left( {3; + \infty } \right).\)   

B. \(\left( { - \infty ;3} \right).\) 

C. \(\left( {3;6} \right).\) 

D. \(\left( {0;3} \right).\) 

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}f'\left( x \right) = \left( {{{\log }_{0,5}}\left( {6x - {x^2}} \right)} \right)'\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\left( {6x - {x^2}} \right)'}}{{\left( {6x - {x^2}} \right)\ln 0,5}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{6 - 2x}}{{\left( {6x - {x^2}} \right)\ln 0,5}}\end{array}\)

Khi đó: \(f'\left( x \right) > 0 \Leftrightarrow \dfrac{{6 - 2x}}{{\left( {6x - {x^2}} \right)\ln 0,5}} > 0\).

 Do \(0,5 < 1 \Rightarrow \ln 0,5 < \ln 1 = 0\) \( \Rightarrow \left( * \right) \Leftrightarrow \dfrac{{6 - 2x}}{{6x - {x^2}}} < 0\).

Ta có bảng xét dấu:

Dựa vào bảng xét dấu \( \Rightarrow x \in \left( { - \infty ;0} \right) \cup \left( {3;6} \right)\).

Chọn C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Ngô Gia Tự

Số câu hỏi: 40

Copyright © 2021 HOCTAP247