Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) liên tục và có đồ thị trên \(\mathbb{R}\) như hình bên. Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm c...

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) liên tục và có đồ thị trên \(\mathbb{R}\) như hình bên. Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực tiểu?

A. 4

B. 5

C. 3

D. 2

* Đáp án

C

* Hướng dẫn giải

\(x = a\) là cực tiểu của hàm số \(y = f\left( x \right)\)  khi \(a \in D\) và \(f'\left( x \right)\) đổi dấu từ âm \(\left(  -  \right)\) sang dương \(\left(  +  \right)\) khi đi qua điểm \(x = a\).

Từ đồ thị hàm số \(y = f'\left( x \right)\) ta thấy có 3 điểm thuộc đồ thị hàm số và tại đó, \(f'\left( x \right)\) đổi dấu từ âm \(\left(  -  \right)\) sang dương \(\left(  +  \right)\). Do đó hàm số \(y = f\left( x \right)\) có 3 điểm cực tiểu.

Đáp án  C

Copyright © 2021 HOCTAP247