A. \(12\) năm
B. 15 năm
C. 13 năm
D. 14 năm
D
Với số tiền gửi ban đầu là \(A\), với thể thức lãi kép và lãi suất là \(x\% \)/ 1 năm, ta có:
Sau 1 năm, số tiền cả gốc và lãi nhận được là :
\({A_1} = A + A.x = A\left( {1 + x} \right)\)
Sau 2 năm, số tiền cả gốc và lãi nhận được là :
\({A_2} = {A_1} + {A_1}.x = {A_1}\left( {1 + x} \right) = A{\left( {1 + x} \right)^2}\)
……..
Sau \(n\) năm, số tiền cả gốc và lãi nhận được là \({A_n} = A{\left( {1 + x} \right)^n}\)
Thay \(A = 500\) triệu đồng, \(x = 8,6\% /\)năm và theo giả thiết số tiền nhận được sau \(n\) năm nhiều hơn 3 lần số tiền ban đầu ta có:
\(\begin{array}{l}{A_n} > 3A\\ \Leftrightarrow A.{\left( {1 + 8,6\% } \right)^n} > 3A\\ \Leftrightarrow {\left( {1 + 8,6\% } \right)^n} > 3\\ \Leftrightarrow n > {\log _{\left( {1 + 8,6\% } \right)}}3\\ \Rightarrow n > 13,31\end{array}\)
Do đó, sau ít nhất 14 năm thì số tiền nhận được nhiều hơn 3 lần số tiền gửi ban đầu.
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247