Cho hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {3{m^2} + 2m} \right)x + 1\) (với \(m\) là tham số). Gọi \(\left[ {a;b} \right]\) là tập hợp tất cả các gi...

Câu hỏi :

Cho hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {3{m^2} + 2m} \right)x + 1\) (với \(m\) là tham số). Gọi \(\left[ {a;b} \right]\) là tập hợp tất cả các giá trị của \(m\) để hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\). Tính giá trị của biểu thức \(T = a + 3b\) 

A. \(T =  - 3\)  

B. \(T = 3\)   

C. \(T = 2\)   

D. \(T =  - 2\) 

* Đáp án

D

* Hướng dẫn giải

TXĐ:  \(D = \mathbb{R}\). Hàm số đã cho xác định và liên tục trên khoảng \(\left( {4; + \infty } \right)\)

Ta có:

\(\begin{array}{l}y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {3{m^2} + 2m} \right)x + 1\\ \Rightarrow y' = {x^2} - 2\left( {m + 1} \right)x - \left( {3{m^2} + 2m} \right)\end{array}\)

Hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\) khi và chỉ khi:

\(\begin{array}{l}y' \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x - \left( {3{m^2} + 2m} \right) \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow \left( {{x^2} + mx} \right) - \left[ {\left( {3m + 2} \right)x + \left( {3{m^2} + 2m} \right)} \right] \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow x\left( {x + m} \right) - \left( {3m + 2} \right)\left( {x + m} \right) \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow \left[ {x - \left( {3m + 2} \right)} \right]\left( {x + m} \right) \ge 0,\forall x \in \left( {4; + \infty } \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Nếu \(3m + 2 =  - m \Leftrightarrow m =  - \dfrac{1}{2}\) thì   \(\left( 1 \right)\) luôn đúng.

Nếu \(3m + 2 >  - m \Leftrightarrow m >  - \dfrac{1}{2}\) thì   \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x \ge 3m + 2\\x \le  - m\end{array} \right.,\forall x \in \left( {4; + \infty } \right) \Leftrightarrow 3m + 2 \le 4 \Leftrightarrow m \le \dfrac{2}{3}\)

Nếu \(3m + 2 <  - m \Leftrightarrow m <  - \dfrac{1}{2}\) thì  \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x \le 3m + 2\\x \ge  - m\end{array} \right.,\forall x \in \left( {4; + \infty } \right) \Leftrightarrow 4 \ge  - m \Leftrightarrow m \ge  - 4\)

Vậy \(m \in \left[ { - 4;\dfrac{2}{3}} \right]\) thì hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\)

Do đó,  \(T = a + 3b =  - 4 + 3.\dfrac{2}{3} =  - 2\)

Đáp án  D

Copyright © 2021 HOCTAP247