Cho hình chóp S.ABC có tam giác ABC vuông tại B, SA vuông góc với mặt phẳng (ABC). \(SA=5, AB=3, BC=4\).

Câu hỏi :

Cho hình chóp S.ABC có tam giác ABC vuông tại B, SA vuông góc với mặt phẳng (ABC). \(SA=5, AB=3, BC=4\). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.

A. \(R = \frac{{5\sqrt 2 }}{2}.\)

B. \(R = \frac{{5\sqrt 2 }}{3}.\)

C. \(R = \frac{{5\sqrt 3 }}{3}.\)

D. \(R = \frac{{5\sqrt 3 }}{2}.\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(BC \bot SA\) và \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB.\) Vậy hai điểm A, B cùng nhìn cạnh SC dưới một góc vuông. Điều đó chứng tỏ SC là đường kính của mặt cầu ngoại tiếp hình chóp S.ABC. Do đó bán kính

\(R = \frac{{SC}}{2} = \frac{1}{2}\sqrt {S{A^2} + A{C^2}}  = \frac{1}{2}\sqrt {S{A^2} + A{B^2} + B{C^2}}  = \frac{1}{2}\sqrt {{5^2} + {3^2} + {4^2}}  = \frac{{5\sqrt 2 }}{2}.\)

Copyright © 2021 HOCTAP247