Đường thẳng y = x – 1 cắt đồ thị hàm số sau \(y = \dfrac{{2x - 1}}{{x + 1}}\) tại các điểm có tọa độ là:

Câu hỏi :

Đường thẳng y = x – 1 cắt đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) tại các điểm có tọa độ là:

A. (0 ; - 1), (2 ; 1) 

B. (0 ; 2)  

C. (1 ; 2)  

D. (- 1 ; 0), (2 ; 1)  

* Đáp án

A

* Hướng dẫn giải

Xét phương trình hoành độ \(\begin{array}{l}x - 1 = \dfrac{{2x - 1}}{{x + 1}},x \ne  - 1\\ \Leftrightarrow {x^2} - 1 = 2x - 1 \Leftrightarrow {x^2} - 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Hoành độ giao điểm của đường thẳng \(y = x - 1\) và \(y = \dfrac{{2x - 1}}{{x + 1}}\) là \(\left( {0, - 1} \right),\left( {2,1} \right)\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Việt Thanh

Số câu hỏi: 49

Copyright © 2021 HOCTAP247