Cho hàm số \(y = f(x) = {x^3} - 3{x^2} - 4x\).

Câu hỏi :

Cho hàm số \(y = f(x) = {x^3} - 3{x^2} - 4x\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số trên và trục Ox được tính bằng công thức:

A. \(\left| {\int\limits_{ - 1}^4 {f(x)\,dx} } \right|\).         

B. \(\int\limits_{ - 1}^4 {f(x)\,dx} \). 

C. \(\int\limits_{ - 1}^0 {f(x)\,dx + \int\limits_0^4 {f(x)\,dx} } \). 

D. \(\int\limits_{ - 1}^0 {f(x)\,dx - \int\limits_0^4 {f(x)\,dx} } \). 

* Đáp án

D

* Hướng dẫn giải

Phương trình hoành độ giao điểm \({x^3} - 3{x^2} - 4x = 0\)

\(\Leftrightarrow x\left( {{x^2} - 3x - 4} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 3x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\\x =  - 1\end{array} \right.\)

Khi đó diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox được xác định bằng công thức:

\(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right)} \right|} \,dx\)

Mà ta có: \(f\left( x \right) = {x^3} - 3{x^2} - 4x = x\left( {x + 1} \right)\left( {x - 4} \right)\)

+ Với \( - 1 < x < 0 \Rightarrow f\left( x \right) > 0\)

+ Với \(0 < x < 4 \Rightarrow f\left( x \right) < 0\)

Khi đó ta có: \(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right)} \right|} \,dx\)\(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right)} \right|} \,dx = \int\limits_{ - 1}^0 {f\left( x \right)} \;dx - \int\limits_0^4 {f\left( x \right)} \;dx\)

Chọn đáp án D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Trí Đức

Số câu hỏi: 49

Copyright © 2021 HOCTAP247