A. \(\int\limits_a^b {[f(x) + g(x)]\,dx} = \int\limits_a^b {f(x)\,dx + \int\limits_a^b {g(x)\,dx} } \).
B. f(x) liên tục trên [a ; c] và a < b < c thì \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).
C. Nếu \(f(x) \ge 0\) trên đoạn [a ; b] thì \(\int\limits_a^b {f(x)\,dx \ge 0} \).
D. \(\int {\dfrac{{u'(x)dx}}{{u(x)}} = \ln \left| {u(x)} \right|} + C\).
B
+ Áp dụng tính chất của tích phân, ta có \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)\,} \right]dx} = \int\limits_a^b {f\left( {x\,} \right)dx + \int\limits_a^b {g\left( x \right)\,dx} } \)
\( \to \) Khẳng định A đúng.
+ Tính chất của tích phân: Nếu \(f\left( x \right) \ge 0\) trên đoạn \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)\,dx \ge 0} \)
\( \to \) Khẳng định C đúng.
+ Ta có: \(\int {\dfrac{{u'\left( x \right)dx}}{{u\left( x \right)}} = \int {\dfrac{{d\left( {u\left( x \right)} \right)}}{{u\left( x \right)}}} } = \ln \left| {u\left( x \right)} \right| + C\)
\( \to \) Khẳng định D đúng.
\( \to \) Khẳng định B sai.
Chọn đáp án B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247