Cho biết số thực a thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}} \,dx = {e^2} - 1\). Khi đó a có giá trị bằng:

Câu hỏi :

Cho số thực a thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}} \,dx = {e^2} - 1\). Khi đó a có giá trị bằng:

A. 0   

B. -1

C. 1

D. 2

* Đáp án

C

* Hướng dẫn giải

Ta có: \(\int\limits_{ - 1}^a {{e^{x + 1}}} \,dx \)

\(= e\int\limits_{ - 1}^a {{e^x}\,d} \left( x \right)\)

\(= e\left( {{e^x}} \right)\left| {_{ - 1}^a} \right. \)

\(= e\left( {{e^a} - {e^{ - 1}}} \right) + C = {e^{a + 1}} - e + C\)

Khi đó \(a + 1 = 2 \Rightarrow a = 1\)

Chọn đáp án C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Trí Đức

Số câu hỏi: 49

Copyright © 2021 HOCTAP247