A. \(\max |z| = 2\sqrt 2 + 1\).
B. \(\max |z| = 2\sqrt 2 \).
C. \(\max |z| = 2\sqrt 2 + 2\).
D. \(\max |z| = 2\sqrt 2 - 1\).
A
Đặt z = x +yi M (x, y)
\(\begin{array}{l}\left| {z - 2 + 2i} \right| = 1\\ \Rightarrow \left| {x + yi - 2 + 2i} \right| = 1\\ \Rightarrow \left| {\left( {x - 2} \right) + \left( {y + 2} \right)i} \right| = 1\\ \Rightarrow \sqrt {{{(x - 2)}^2} + {{(y + 2)}^2}} = 1\end{array}\)
Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm I(2,-2), bán kính r=1
Ta có \(\left| z \right| = \left| {x = yi} \right| = \sqrt {{x^2} + {y^2}} \)
Lấy H( 0, 0) và M( x, y) thì \(HM = \sqrt {{x^2} + {y^2}} \)
Do M chạy trên đường tròn, H cố định nên MH lớn nhất khi M là giao điểm của HI với đường tròn
Với H( 0, 0) và I( 2, -2) nên \(\overrightarrow {HI} = (2, - 2)\)
Phương trình đường thẳng HI:
\((1)\left\{ \begin{array}{l}x = 2t\\y = - 2t\end{array} \right.\)
Do HI giao với đường tròn nên ta thay (1) vào pt đường tròn, ta được:
\(\begin{array}{l}{\left( {2t - 2} \right)^2} + {\left( { - 2t + 2} \right)^2} = 1\\ \Leftrightarrow 8{\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow {(t - 1)^2} = \dfrac{1}{8}\\ \Leftrightarrow \left[ \begin{array}{l}t - 1 = \dfrac{1}{{2\sqrt 2 }}\\t - 1 = \dfrac{{ - 1}}{{2\sqrt 2 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = 1 + \dfrac{1}{{2\sqrt 2 }} \\t = 1 - \dfrac{1}{{2\sqrt 2 }} \end{array} \right.\end{array}\)
\( \Rightarrow {M_1}\left( {2 + \dfrac{1}{{\sqrt 2 }}, - 2 - \dfrac{1}{{\sqrt 2 }}} \right)\) \(\Rightarrow H{M_1} = 2\sqrt 2 + 1\)
\(\Rightarrow {M_2}\left( {2 - \dfrac{1}{{\sqrt 2 }}, - 2 + \dfrac{1}{{\sqrt 2 }}} \right) \) \(\Rightarrow H{M_2} = 2\sqrt 2 - 1\)
\( \Rightarrow {\left| z \right|_{{\rm{max}}}} = H{M_1} = 2\sqrt 2 + 1\) với \({M_1}\left( {2 + \dfrac{1}{{\sqrt 2 }}, - 2 - \dfrac{1}{{\sqrt 2 }}} \right)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247