A. \(\dfrac{{a\sqrt 2 }}{2}.\)
B. \(\dfrac{{a\sqrt 2 }}{4}.\)
C. \(a\sqrt 2 .\)
D. \(2a\sqrt 2 .\)
B
Do tứ diện ABCD đều nên tâm mặt cầu tiếp xúc với 6 cạnh cũng trùng với tâm mặt cầu ngoại tiếp tứ diện.
Gọi H là tâm đường tròn ngoại tiếp tam giác BCD. Suy ra H chính là trọng tâm tam giác BCD.
Khi đó AH chính là trục đường tròn ngoài tiếp tam giác BCD.
Gọi K là trung điểm của AB.
Mặt phẳng trung trực của AB qua K cắt AH tại I chính là tâm mặt cầu ngoại tiếp tứ diện đều ABCD.
Ta có: \(r = IK\). Mặt khác \(\Delta AKI\) đồng dạng \(\Delta AHB\)
\(\begin{array}{l} \Rightarrow \dfrac{{AK}}{{AH}} = \dfrac{{AI}}{{AB}} = \dfrac{{IK}}{{HB}}\\ \Leftrightarrow \dfrac{{AB}}{{2AH}} = \dfrac{{IK}}{{HB}}\end{array}\)
Trong đó: \(AB = a,\,HB = \dfrac{{a\sqrt 3 }}{3}\)
\(AH = \sqrt {A{B^2} - H{B^2}} = \dfrac{{a\sqrt 6 }}{3}\)
\(\Rightarrow r = IK = \dfrac{{a\sqrt 2 }}{4}.\)
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247