Cho biết số phức z có điểm biểu diễn nằm trên đường thẳng 3x – 4y – 3 =0, \(|z|\) nhỏ nhất bằng:

Câu hỏi :

Cho số phức z có điểm biểu diễn nằm trên đường thẳng 3x – 4y – 3 =0, \(|z|\) nhỏ nhất bằng:

A. \(\dfrac{1}{5}\)    

B. \(\dfrac{4}{5}\)  

C. \(\dfrac{2}{5}\)  

D. \(\dfrac{3}{5}\). 

* Đáp án

D

* Hướng dẫn giải

\(\left( \Delta  \right):3x - 4y - 3 = 0\)

Đặt z= x+yi

\(\left| z \right| = \left| {x + yi} \right| = \sqrt {{x^2} + {y^2}} \)

L ấy O(0, 0).

Ta  có |z|min khi kh oảng  c ách t ừ O đ ến \(\left( \Delta  \right)\) l à ng ắn nh ất

\({\left| z \right|_{\min }} = d(O',\Delta ) = \dfrac{{\left| {3.0 - 4.0 - 3} \right|}}{{\sqrt {{3^2} + {4^2}} }} \)\(\,= \dfrac{3}{5}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Trí Đức

Số câu hỏi: 49

Copyright © 2021 HOCTAP247