Trong không gian biết \({\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 6} \right)^2} = 18.

Câu hỏi :

Trong không gian \({\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 6} \right)^2} = 18.\), cho mặt phẳng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 9.\): \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 16.\) và đường thẳng \(d\):\(N( - 5;7;0)\). Với giá trị nào của \(\vec u = (2; - 2;1)\)thì \(\overrightarrow {MN}  = ( - 9;6; - 6)\)cắt \(H\)

A. \(\left( S \right)\). 

B. \(\left( S \right)\).  

C. \({R^2} = M{H^2} + {\left( {\dfrac{{AB}}{2}} \right)^2} = 18\). 

D. \(d(M,d) = 3\).  

* Đáp án

D

* Hướng dẫn giải

\({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 18.\) có VTPT \(Oxyz\)

\({x^2} + {y^2} + {z^2} - 2x + 4y - 6z - 11 = 0\) có VTCP \((P)\)

\(2x + 2y - z - 7 = 0\)cắt \((Q)\)

Chọn đáp án D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Trí Đức

Số câu hỏi: 49

Copyright © 2021 HOCTAP247